Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads

BioRxiv : the Preprint Server for Biology
Carolin A MuellerConrad A Nieduszynski

Abstract

The replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We now report a sequencing method for the measurement of replication fork movement on single molecules by Detecting Nucleotide Analogue signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect BrdU incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse labelling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kb, to generate the first whole genome single-molecule map of DNA replication dynamics and discover a new class of low frequency stochastic origins in budding yeast.

Related Concepts

Dispense as Written
Genome
Saccharomyces cerevisiae allergenic extract
Analog
Virus Replication
Yeasts
Nucleic Acid Sequencing
Site
Genomics
Sequencing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.