Apr 24, 2020

Cardioprotective effects of rat adipose‑derived stem cells differ under normoxic/physioxic conditions and are associated with paracrine factor secretion

International Journal of Molecular Medicine
Yuanyuan LinYuping Gao

Abstract

Adipose tissue‑derived stem cells (ASCs) are beneficial for myocardial regeneration. The physiological oxygen content of human organs is estimated to range between 1 and 11%. However, in the majority of previous in vitro studies with cultured ASCs, the O2 concentration was artificially set to 21%. The present study aimed to compare the protective effects of rat ASCs on neonatal rat ventricular myocytes (NRVMs) under normoxic (21% O2) and physioxic (5% O2) conditions. Rat NRVMs cultured under normoxia or physioxia were treated with H2O2 or left untreated, and further co‑cultured with ASCs in 21% or 5% O2. The apoptosis of NRVMs was evaluated by Annexin V staining and quantitating the protein levels of Bcl‑2 and Bax by western blotting. The oxidative stress of NRVMs was determined by a glutathione/oxidized glutathione assay kit. The concentrations of secreted vascular endothelium growth factor (VEGF), insulin like growth factor‑1 (IGF‑1) and basic fibroblast growth factor (bFGF) in the culture medium were quantified by enzyme‑linked immunosorbent assay. Under both normoxia and physioxia, co‑culture with ASCs protected H2O2‑exposed NRVMs from apoptosis and significantly alleviated the oxidative stress in NRVMs. The protective effe...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Annexin A5
Bad protein
Stem Cells
ANXA5
Study
Coculture Techniques
Oxidative Stress
Oxygen
Insulin-Like Growth Factor I
Fibroblast Growth Factor 2

Related Feeds

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis