Cardiotoxicity of digitalis glycosides: roles of autonomic pathways, autacoids and ion channels
Abstract
1 Cardiac glycosides have been used for centuries as therapeutic agents for the treatment of heart diseases. In patients with heart failure, digoxin and the other glycosides exert their positive inotropic effect by inhibiting Na(+)-K(+)-ATPase, thereby increasing intracellular sodium, which, in turn, inhibits the Na(+)/Ca(2+) exchanger and increases intracellular calcium levels. As the therapeutic index of digitalis is narrow, arrhythmias are common problems in clinical practice. The mechanisms and mediators of these arrhythmias, however, are not completely understood. 2 The involvement of the sympathetic and parasympathetic nervous system in digitalis cardiac toxicity is reviewed. 3 Receptors, channels, exchange systems or other cellular components involved in digitalis-induced cardiotoxicity are also reviewed. 4 Possible mediators of digitalis-induced cardiac toxicity are discussed. 5 Management of digitalis toxicity in patients is summarized. 6 The determination of the possible mediators of digitalis-induced cardiac toxicity will enhance our knowledge and lead to the development of new therapeutic strategies to treat these lethal arrhythmias.
References
Citations
Related Concepts
Related Feeds
Arrhythmia
Arrhythmias are abnormalities in heart rhythms, which can be either too fast or too slow. They can result from abnormalities of the initiation of an impulse or impulse conduction or a combination of both. Here is the latest research on arrhythmias.
Atrial Fibrillation
Atrial fibrillation is a common arrhythmia that is associated with substantial morbidity and mortality, particularly due to stroke and thromboembolism. Here is the latest research.
Cardiac Glycosides
Cardiac glycosides are a diverse family of naturally derived compounds that bind to and inhibit na+/k+-atpase. Discover the latest research on cardiac glycosides heres.