Mar 29, 2000

Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity

Journal of Neurochemistry
A C Kuhlmann, T R Guilarte

Abstract

The peripheral benzodiazepine receptor (PBR) is currently used as a marker of inflammation and gliosis following brain injury. Previous reports suggest that elevated PBR levels in injured brain tissue are specific to activated microglia and infiltrating macrophages. We have produced hippocampal lesions using the neurotoxicant trimethyltin (TMT) to examine the cellular and subcellular nature of the PBR response. Degenerating, argyrophilic pyramidal neurons were observed in the hippocampus at 2 and 14 days after TMT exposure. Reactive microglia were also evident at both times with a maximal response observed at 14 days, subsiding by 6 weeks. Astrocytosis was observed at 14 days and 6 weeks, but not 2 days, after TMT administration, suggesting that the onset of the astroglia response is delayed, but more persistent, compared with microgliosis. Morphological evidence from [3H]PK11195 microautoradiography and PBR immunohistochemistry indicates that both astrocytes and microglia are capable of expressing high levels of PBR after injury. This was confirmed by double labeling of either Griffonia simplicifolia isolectin B4, a microglial-specific marker, or glial fibrillary acidic protein, an astrocyte-specific protein with PBR fluoresce...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Establishment and Maintenance of Localization
Brain Injuries
Antineoplastic Agents
Alpha-Neurotoxins
Abnormal Degeneration
Immunohistochemistry
Glial Fibrillary Acidic Protein
Neurons
Astrocytes
Nerve Degeneration

About this Paper

Related Feeds

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Astrocytes in Repair & Regeneration

Astrocytes are glial cells found within the CNS and are able to regenerate new neurons. They become activated during CNS injury and disease. The activation leads to the transcription of new genes and the repair and regeneration of neurons. Discover the latest research on astrocytes in repair and regeneration here.

Astrocytes & Huntington’s Disease

Astrocytes are abundant within the central nervous system and their dysfunction has been thought to be an important contributor to some neurodegenerative diseases, in particular Huntington’s disease. Damage to these cells may make neurons more susceptible to degeneration. Here is the latest research on astrocytes and Huntington’s disease.

Brain Injury & Trauma

brain injury after impact to the head is due to both immediate mechanical effects and delayed responses of neural tissues.