Sep 16, 2014

Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage

BioRxiv : the Preprint Server for Biology
Joerg HagmannDetlef Weigel

Abstract

There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana , numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. We observed little DNA methylation divergence whole-genome wide. Nonetheless, methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome-Wide Association Study
DNA Methylation [PE]
Patterns
Environment
Genome Assembly Sequence
DNA Methylation
Study of Epigenetics
Site
Arabidopsis thaliana extract
Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.