Cerebellar learning using perturbations

BioRxiv : the Preprint Server for Biology
Guy BouvierBoris Barbour

Abstract

The cerebellum aids the learning and execution of fast coordinated movements, with acquired information being stored by plasticity of parallel fibre--Purkinje cell synapses. According to the current consensus, erroneously active parallel fibre synapses are depressed by complex spikes arising as climbing fibres signal movement errors. However, this theory cannot solve the credit assignment problem of using the limited information from a global movement evaluation to optimise behaviour by guiding the plasticity in numerous neurones. We identify the possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create an eligibility trace for plasticity and signal resulting error changes to guide plasticity. These error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors, generates specific predictions for synaptic plasticity rules that contradict the current consensus. However, in vitro plasticity experiments under physiological conditions verified our predictions, highlighting the sensitivity of plasticity studies to unphysiological conditions. Using numerical and analytical approach...Continue Reading

Related Concepts

Study
Structure of Purkinje Fibers
Climbing Fiber
Depressed - Symptom
Neurons
Purkinje Cells
Plant fiber
Entire Basal Nuclei
Neuronal Plasticity
Evaluation

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.