Cerebral organoid proteomics reveals signatures of dysregulated cortical development associated with human trisomy 21

BioRxiv : the Preprint Server for Biology
Tristan D McClure-BegleyWilliam M Old


Human trisomy 21 (Down syndrome) is the most common genetic cause of intellectual disability, and is associated with complex perturbations in protein expression during development. Brain region-specific alterations in neuronal density and composition originate prenatally in trisomy 21 individuals, and are presumed to underlie the intellectual disability and early onset neurodegeneration that characterizes Down syndrome. However, the mechanisms by which chromosome 21 aneuploidy drives alterations in the central nervous system are not well understood, particularly in brain regions that are uniquely human and thus inaccessible to established animal models. Cerebral organoids are pluripotent stem cell derived models of prenatal brain development that have been used to deepen our understanding of the atypical processes associated with human neurobiological disorders, and thus provide a promising avenue to explore the molecular basis for neurodevelopmental alterations in trisomy 21. Here, we employ high-resolution label-free mass spectrometry to map proteomic changes over the course of trisomy 21 cerebral organoid development, and evaluate the proteomic alterations in response to treatment with harmine, a small molecule inhibitor of ...Continue Reading

Related Concepts

Cerebral Cortex
Chromosomes, Human, Pair 21
Down Syndrome
Extracellular Matrix
Nerve Degeneration

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Brain Organoids in Disease Modeling

Brain organoids are three-dimensional cell culture models derived from human pluripotent stem cells. Since they resemble the embryonic brain, they can be used to help study brain biology, early brain development, and brain diseases. Discover the latest research on brain organoids in disease modeling here.

Axon Guidance

Axon guidance is a complex neural developmental field that investigates mechanisms through which neurons send out axons to reach its target. Here is the latest research in this domain.

3D Cellular Models of Brain and Neurodegeneration

Brain organoids are three-dimensional in vitro cellular models of the brain that can recapitulate many processes such as the neurodevelopment. In addition, these organoids can be combined with other cell types, such as neurons and astrocytes to study their interactions in assembloids. Disease processes can also be modeled by induced pluripotent stem cell-derived organoids and assembloids from patients with neurodegenerative disorders. Discover the latest research on the models here.