Aug 1, 1976

Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis

Journal of Bacteriology
J Thompson

Abstract

Galactose-grown cells of Streptococcus lactis ML3 acculated alpha-aminoisobutyric acid (AIB) by using energy derived from glycolysis and arginine catabolism. The transport system displayed low-affinity Michaelis-Menten saturation kinetics. Using galactose or arginine as energy sources, similar V max and K m values for AIB entry were obtained, but on prolonged incubation the intracellular steady-state concentration of AIB in cells metabolizing arginine was only 65 to 70% that attained by glycolyzing cells. Efflux of AIB FROM PRELOADED CElls was temperature dependent and exhibited the characteristics of a first-order reaction. The rate of AIB exit was accelerated two- to threefold in the presence of metabolizable energy sources. Metabolic inhibitors including p-chloromercuribenzoate, dinitrophenol, azide, arsentate, and N, N'-dicyclohexylcarbodiimide either prevented or greatly reduced AIB uptake. Fluoride, iodoacetate and N-ethylmaleimide abolished galactose-dependent, but not arginine-energized, AIB uptake. K+ and Rb+ reduced the steady-state intracellular AIB concentration by approximately 40%, and these cations also induced rapid efflux of solute from actively transporting cells. Equivalent concentrations (10 mM) of Na+, Li+,...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Metabolic Process, Cellular
Ethylmaleimide
Arginine hydrochloride
Dinitrophenols
2-aminoisobutyric acid
Arginine Catabolic Process
Galactose Measurement
Fluoride Measurement
Energy Metabolism
Protoplasm

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.