Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue

Journal of Hazardous Materials
Hwa Young Lee

Abstract

Bottom and fly ash collected from automobile shredder residue (ASR) incinerator have been characterized in terms of particle size, compositions, and heavy metal leaching by the standard TCLP method. Two alternative methods were also examined for the treatment of heavy metals in ASR incinerator ash from the aspect of recycling into construction or lightweight aggregate material. It was remarkable that the concentration of Cu was very high compared to common MSWI bottom and fly ash, which was probably originated from copper wires contained in ASR. As a whole, the results of characterization of ASR fly ash were in good agreement with common MSWI fly ash in terms of particle size, pH, and water-soluble compounds. It was clearly found that heavy metals could be removed thoroughly or partly from ASR fly ash through acid washing with dilute HCl solution so that the remaining fly ash could be landfilled or used as construction material. It was also found that the amount of heavy metal leachability of lightweight aggregate pellet prepared with ASR incineration ash could be significantly decreased so that the application of it to lightweight aggregate would be possible without pre-treatment for the removal of heavy metals.

Citations

Related Concepts

Automobiles
Vitreous Carbon
Desertification
Hydrogen-Ion Concentration
Particle Size
Incineration
Metals, Heavy
Particulate Matter
Environmental Remediation
Soft Coal Fly Ash

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.