Characteristics of Residual Stress Produced by MoSi2 Plasma Spraying Ant Its Production Mechanism

K.H. ChangY.C. Kim

Abstract

MoSi2 powder was deposited by low pressure plasma spraying on the specimen with 50%Ni-50%Cr based coat after blasted SS400 substrate. Compressive stress was generated in MoSi2 spray deposit. Tensile stress was generated in 50%Ni-50%Cr spray deposit. Large compressive stress was generated in SS400 substrate adjacent to the interface. Investigating the production mechanism of residual stress and the validity of provided residual stress, a series of the experiments were done. Blasting on the substrate, residual stress near the surface of the substrate was compressive and that of the inner part of the substrate was tensile. After the blast treatment on SS400 substrate, depositing on the substrate with 50%Ni50% Cr, residual stress of the spray deposit was tensile. This is because SS400 substrate restricts the contraction of 50%Ni-50%Cr spray deposit which has large thermal shrinkage. Depositing MoSi2 after the blast treatment, compressive stress was generated in the spray deposit. This is because the linear expansion thermal coefficient of MoSi2 is extremely small comparing with that of SS400 substrate nevertheless the temperature of the spray deposit is higher than that of the substrate. As the result, the spray deposit restricts t...Continue Reading

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Blastomycosis

Blastomycosis fungal infections spread through inhaling Blastomyces dermatitidis spores. Discover the latest research on blastomycosis fungal infections here.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Microbicide

Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.

© 2021 Meta ULC. All rights reserved