Apr 1, 1987

Characterization and assay of tartrate-resistant acid phosphatase activity in serum: potential use to assess bone resorption

Clinical Chemistry
K H LauD J Baylink


We improved the spectrophotometric assay of tartrate-resistant acid phosphatase (TrACP; EC activity in serum. During development of the assay we found that human serum contains a dialyzable, mixed-type noncompetitive inhibitor(s) of TrACP activity, the effects of which on the assay were substantially lessened by diluting the serum sample with water before assay and increasing the substrate concentration. Hemolysis releases into serum a significant amount of TrACP activity from erythrocytes, which can be inactivated by incubating the serum at 37 degrees C for 1 h before assay. Our improved assay was reproducible (CV = 5%), and measured within 10% of the amount of added bovine skeletal TrACP activity. Preliminary application of the assay revealed that the amount of serum TrACP activity in patients with skeletal diseases differed from normal values and changed in the same direction as the expected change in bone turnover, suggesting that TrACP activity in serum could be useful clinically as a marker of bone metabolism, possibly of bone resorption.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Acid Phosphatase
Bone Resorption
ACP5 gene
Bos taurus
Skeletal System
Mn(III) tartrate
Collagen Cross Links Tartrate-resistant Acid Phosphatase (Lab Test)
Tartrate-resistant acid phosphatase
Specimen Type - Erythrocytes
Red Blood Cell Count Measurement

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.