Jan 24, 2003

Characterization and implications of Ca2+ binding to pectate lyase C

The Journal of Biological Chemistry
S R HerronF Jurnak

Abstract

Ca(2+) is essential for in vitro activity of Erwinia chrysanthemi pectate lyase C (PelC). Crystallographic analyses of 11 PelC-Ca(2+) complexes, formed at pH 4.5, 9.5, and 11.2 under varying Ca(2+) concentrations, have been solved and refined at a resolution of 2.2 A. The Ca(2+) site represents a new motif for Ca(2+), consisting primarily of beta-turns and beta-strands. The principal differences between PelC and the PelC-Ca(2+) structures at all pH values are the side-chain conformations of Asp-129 and Glu-166 as well as the occupancies of four water molecules. According to calculations of pK(a) values, the presence of Ca(2+) and associated structural changes lower the pK(a) of Arg-218, the amino acid responsible for proton abstraction during catalysis. The Ca(2+) affinity for PelC is weak, as the K(d) was estimated to be 0.132 (+/-0.004) mm at pH 9.5, 1.09 (+/-0.29) mm at pH 11.2, and 5.84 (+/-0.41) mm at pH 4.5 from x-ray diffraction studies and 0.133 (+/-0.045) mm at pH 9.5 from intrinsic tryptophan fluorescence measurements. Given the pH dependence of Ca(2+) affinity, PelC activity at pH 4.5 has been reexamined. At saturating Ca(2+) concentrations, PelC activity increases 10-fold at pH 4.5 but is less than 1% of maximal act...Continue Reading

  • References19
  • Citations18

References

Mentioned in this Paper

Tryptophan
Pectobacterium chrysanthemi
Calcium
Complex (molecular entity)
Tertiary Protein Structure
Crystallography, X-Ray
Pectate lyase C
X-Ray Diffraction
Pectate lyase class III
Polysaccharide-Lyases

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.