Mar 1, 1995

Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans

Applied and Environmental Microbiology
C H Kim

Abstract

An endo-1,4-beta-D-glucanase I (Avicelase I; EC 3.2.1.4) was purified to homogeneity from an extracellular celluloxylanosome of Bacillus circulans F-2. The purification in the presence of 6 M urea yielded homogeneous enzyme. The enzyme had a monomeric structure, its relative molecular mass being 75 kDa as determined by gel filtration and 82 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pI was 5.4, and the N-terminal amino acid sequence was ASNIGGWVGGNESGFEFG. The optimal pH was 4.5, and the enzyme was stable at pH 4 to 10. The enzyme has a temperature optimum of 50 degrees C, it was stable at 55 degrees C for 46 h, and it retains approximately 20% of its activity after 30 min at 80 degrees C. It showed high-level activity towards carboxymethyl cellulose (CMC) as well as p-nitrophenyl-beta-D-cellobioside, 4-methylumbelliferyl cellobioside, xylan, Avicel, filter paper, and some cello-oligosaccharides. Km values for birch xylan, CMC, and Avicel were 4.8, 7.2, and 87.0 mg/ml, respectively, while Vmax values were 256, 210, and 8.6 mumol x min-1 x mg-1, respectively. Cellotetraose was preferentially cleaved into cellobiose (G2) plus G2, and cellopentaose was cleaved into G2 plus cellotriose (G3),...Continue Reading

Mentioned in this Paper

Barrett Esophagus
Extracellular
Birch antigen
cellotetraose
Carboxymethylcellulase
cellodextrin
Avicel
SDS-PAGE
Cellobiose
Sulfhydryl Compounds

About this Paper

Related Feeds

Barrett Esophagus

Barrett’s esophagus if a serious complication of gastroesophageal reflux disease during which the normal esophageal lining changes to tissue that resembles intestinal lining. Here is the latest research.