Jun 9, 2014

Characterization of a rationally engineered phaCAB operon with a hybrid promoter design

BioRxiv : the Preprint Server for Biology
Iain BowerPaul Freemont

Abstract

Biopolymers, such as poly-3-hydroxy-butyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore more efficient P(3HB) production processes are required. In this study, we describe the model-guided design and experimental characterization of several engineered P(3HB) producing operons. In particular, we describe the characterization of a novel hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. The hybrid phaCAB operon represents a step towards the more efficient production of P(3HB), which has an array of applications from 3D printing to tissue engineering.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Three-dimensional
Biopolymers
Promoter
Carbon
Plant Oils
Gene Library
Biomaterial Compatibility
Tryptophan repressor protein
poly-beta-hydroxybutyrate

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.