May 1, 1975

Characterization of a specific transport system for arginine in isolated yeast vacuoles

European Journal of Biochemistry
T BollerA Wiemken

Abstract

The transport of L-arginine was studied in isolated vacuoles of Saccharomyces cerevisiae. A centrifugation method allowed rapid separation of the fragile vacuoles from the incubation media so that initial uptake rates of [14C]arginine could be measured. Labelled arginine added to the medium was accumulated in the isolated vacuoles; it was found to exchange specifically with the arginine already present in the vacuoles. Such an exchange did not take place in intact spheroplasts. The pH dependence of the arginine transport in the vacuoles was tested. As the vacuoles are unstable in the pH range of optimal transport activity (pH above 7.0), the pH optimum of the transport reaction could not be determined. From the temperature dependence, the apparent energy of activation was calculated to be 9800 cal/mol. Arginine transport shows saturation kinetics with an apparent Km of 30 muM in the isolated vacuoles, and of 1.5 muM in the spheroplasts. Competition experiments with amino acids and arginine analogues demonstrated that the arginine transport in both vacuoles and spheroplasts, is highly specific. The two systems, however, were shown to have distinct specificities. The inhibition of vacuolar L-arginine transport by D-arginine, L-hi...Continue Reading

Mentioned in this Paper

Arginine hydrochloride
Centrifugation, Density Gradient
Histidine
Canavanine
L-arginine Transport
Saccharomyces cerevisiae allergenic extract
Structure-Activity Relationship
Amino Acids, I.V. solution additive
Uptake
Molecular Transport

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.