Apr 28, 2016

Characterization of N-acyl homoserine lactones (AHLs) producing bacteria isolated from vacuum-packaged refrigerated turbot (Scophthalmus maximus) and possible influence of exogenous AHLs on bacterial phenotype

The Journal of General and Applied Microbiology
Caili ZhangMingyong Zeng


Quorum sensing (QS) is a cell-to-cell communication mechanism through which microbial cells communicate and regulate their wide variety of biological activities. N-acyl homoserine lactones (AHLs) are considered to be the most important QS signaling molecules produced by several Gram-negative bacteria. The present study aimed to screen the AHLs-producing bacteria from spoiled vacuum-packaged refrigerated turbot (Scophthalmus maximus) by biosensor assays, and the profiles of AHLs produced by these bacteria were determined using reversed-phase thin-layer chromatography (RP-TLC) and gas chromatography-mass spectrometry (GC-MS). Effects of exogenous AHLs and QS inhibitor (QSI) on the phenotypes (i.e., extracellular proteolytic activity and biofilm formation) of the AHLs-producing bacteria were also evaluated. Our results demonstrated that eight out of twenty-two isolates were found to produce AHLs. Three of the AHLs-producing isolates were identified as Serratia sp., and the other five were found to belong to the family of Aeromonas. Two isolates (i.e., S. liquefaciens A2 and A. sobria B1) with higher AHLs-producing activities were selected for further studies. Mainly, RP-TLC and GC-MS analysis revealed three AHLs, i.e., 3-oxo-C6-HS...Continue Reading

Mentioned in this Paper

Protein Digestion
Serratia sp. A2
Regulation of Biological Process
Vacuum (Physical Force)
Homoserine lactone, (S)-isomer
Peptide Hydrolases

Related Feeds

Biofilm & Infectious Disease

Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.


Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.