PMID: 36884Mar 15, 1979

Characterization of prolactin binding by membrane preparations from rat liver

The Biochemical Journal
A M Silverstein, J F Richards


Binding sites for prolactin were identified in a plasma-membrane-enriched fraction isolated from livers of mature female rats. 125I-labelled sheep prolactin prepared by the lactoperoxidase procedure retained the same molecular integrity and binding affinity as the native hormone at physiological pH. The receptors bound prolactin from different species, whereas non-lactogenic hormones were not bound. The binding of 125I-labelled sheep prolactin was activated equally by bivalent and univalent cations, bivalent cations exerting their maximal effect at much lower concentrations. The association of 125I-labelled sheep prolactin with the receptor was a time- and temperature-dependent process. Partial dissociation was detected. The binding of 125I-labelled sheep prolactin was strongly influenced by pH, with an optimum observed at pH 6.5. Receptor activity was destroyed by Pronase and phospholipase C, whereas neuraminidase increased binding. Treatment of the membranes by ribonuclease and deoxyribonuclease did not affect the binding. Binding of 125I-labelled sheep prolactin was inhibited by p-chloromercuribenzoic acid, dithiothreitol and by brief exposure to high temperatures. Scatchard analysis of the binding of 125I-labelled sheep pro...Continue Reading


Mar 1, 1988·Brain, Behavior, and Immunity·L MateraE Genazzani
Mar 1, 1988·General and Comparative Endocrinology·G MuccioliR Di Carlo
Sep 1, 1981·Hepatology : Official Journal of the American Association for the Study of Liver Diseases·W H Evans
May 1, 1984·International Journal of Peptide and Protein Research·C H ChengR C Pak

Related Concepts

Tissue Membrane
Mammary Gland
Hormone Receptors, Cell Surface

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.