Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy

BioRxiv : the Preprint Server for Biology
Rebecca D VaadiaWesley B Grueber

Abstract

Proprioceptors provide feedback about body position that is essential for coordinated movement. Proprioceptive sensing of the position of rigid joints has been described in detail in several systems, however it is not known how animals with an elastic skeleton encode their body positions. Understanding how diverse larval body positions are dynamically encoded requires knowledge of proprioceptor activity patterns in vivo during natural movement. Here we applied high-speed volumetric SCAPE microscopy to simultaneously track the position, physical deformation, and temporal patterns of intracellular calcium activity of multidendritic proprioceptors in crawling Drosophila larvae. During the periodic segment contraction and relaxation that occurs during crawling, proprioceptors with diverse morphologies showed sequential onset of activity throughout each periodic episode. A majority of these proprioceptors showed activity during segment contraction with one neuron type activated by segment extension. Different timing of activity of contraction-sensing proprioceptors was related to distinct dendrite terminal targeting, providing a continuum of position encoding during all phases of crawling. These dynamics could endow different propri...Continue Reading

Related Concepts

Joints
Larva
Microscopy
Neurons
Intracellular
All Large Arteries
Phocidae
Shapes
Anatomical Segmentation
Protein Activation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.