Oct 15, 1989

Characterization of the catalytic subunit of an anion pump

The Journal of Biological Chemistry
C M Hsu, B P Rosen


The ArsA protein, the 63-kDa catalytic subunit of an oxyanion-translocating ATPase, was purified by successive chromatography using Q-Sepharose, red agarose, and phenyl-Sepharose to a specific activity in excess of 1 mumol of ATP hydrolyzed per min per mg of protein. ATPase activity was dependent on the presence of the oxyanionic substrates. Inhibitors of other classes of ion-translocating ATPases had no effect on ArsA ATPase activity, including N,N'-dicyclohexyl-carbodiimide, azide, vanadate, and nitrate. The apparent Km for ATP was determined to be 0.13 mM. The optimal pH range for ATP hydrolysis was 7.5 to 7.8. ATPase activity required Mg2+ at a molar ratio of 2 ATP:1 Mg2+. Limited proteolysis by trypsin was used to study conformational changes produced upon binding of substrates to the ArsA protein. In the absence of substrates, the ArsA protein was rapidly cleaved by trypsin to a major product of 30 kDa. ATP was partially protected from trypsin digestion, while the anionic substrate antimonite alone had no effect on proteolysis. Combination of the two substrates nearly completely protected the ArsA protein from proteolysis. Proteolytic cleavage correlated with loss of anion-stimulated ATPase activity and substrate protecti...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Cations, Divalent
Alkalescens-Dispar Group
Adenosine Triphosphatases
Anion Pumps
Macromolecular Alteration
Cytokinesis of the Fertilized Ovum
Ion Pumps

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.