Apr 25, 2020

Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

BioRxiv : the Preprint Server for Biology
T. Maylla Fontoura CaronDarren Norris


Degraded Amazonian forests can take decades to recover and the ecological results of natural regeneration are still uncertain. Here we use field data collected across 15 lowland Amazon smallholder properties to examine the relationships between forest structure, mammal diversity, regrowth type, regrowth age, topography and hydrography. Forest structure was quantified together with mammal diversity in 30 paired regrowth-control plots. Forest regrowth stage was classified into three groups: late second-regrowth, early second-regrowth and abandoned pasture. Basal area in regrowth plots remained less than half that recorded in control plots even after 20-25 years. Although basal area did increase in sequence from pasture, early to late-regrowth plots, there was a significant decline in basal area of late-regrowth control plots associated with a decline in the proportion of large trees. There was also contrasting support for different non-mutually exclusive hypotheses, with proportion of small trees (DBH <20cm) most strongly supported by topography (altitude and slope) whereas the proportion of large trees (DBH >60cm) supported by plot type and regrowth class. These findings support calls for increased efforts to actively conserve l...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Nucleic Acid Sequencing
Biniou protein, Drosophila
Base Sequence

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.