Apr 12, 2020

Insights on early mutational events in SARS-CoV-2 virus reveal founder effects across geographical regions

BioRxiv : the Preprint Server for Biology
Carlos FarkasM. I. Barria


Here we aim to describe early mutational events across samples from publicly available SARS-CoV-2 sequences from the sequence read archive repository. Up until March 27, 2020, we downloaded 53 illumina datasets, mostly from China, USA (Washington DC) and Australia (Victoria). Of 30 high quality datasets, 27 datasets (90%) contain at least a single founder mutation and most of the variants are missense (over 63%). Five-point mutations with clonal (founder) effect were found in USA sequencing samples. Sequencing samples from USA in GenBank present this signature with 50% allele frequencies among samples. Australian mutation signatures were more diverse than USA samples, but still, clonal events were found in those samples. Mutations in the helicase and orf1a coding regions from SARS-CoV-2 were predominant, among others, suggesting that these proteins are prone to evolve by natural selection. Finally, we firmly urge that primer sets for diagnosis be carefully designed, since rapidly occurring variants would affect the performance of the reverse transcribed quantitative PCR (RT-qPCR) based viral testing.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Gene Polymorphism
Order Coleoptera

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

The Lancet Infectious Diseases
Yang PanQuanyi Wang
American Journal of Clinical Pathology
Ahmed BabikerJeannette Guarner
The New England Journal of Medicine
Xiaoxia LuChinese Pediatric Novel Coronavirus Study Team
© 2020 Meta ULC. All rights reserved