Jun 1, 1986

Chemical modification by diethylpyrocarbonate of an essential histidine residue in 3-ketovalidoxylamine A C-N lyase

Journal of Biochemistry
M TakeuchiK Matsui

Abstract

3-Ketovalidoxylamine A C-N lyase of Flavobacterium saccharophilum is a monomeric protein with a molecular weight of 36,000. Amino acid analysis revealed that the enzyme contains 5 histidine residues and no cysteine residue. The enzyme was inactivated by diethylpyrocarbonate (DEP) following pseudo-first order kinetics. Upon treatment of the inactivated enzyme with hydroxylamine, the enzyme activity was completely restored. The difference absorption spectrum of the modified versus native enzyme exhibited a prominent peak around 240 nm, but there was no absorbance change above 270 nm. The pH-dependence of inactivation suggested the involvement of an amino acid residue having a pKa of 6.8. These results indicate that the inactivation is due to the modification of histidine residues. Substrates of the lyase, p-nitrophenyl-3-ketovalidamine, p-nitrophenyl-alpha-D-3-ketoglucoside, and methyl-alpha-D-3-ketoglucoside, protected the enzyme against the inactivation, suggesting that the modification occurred at or near the active site. Although several histidine residues were modified by DEP, a plot of log (reciprocal of the half-time of inactivation) versus log (concentration of DEP) suggested that one histidine residue has an essential ro...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Histidine
Formic Acids
Carbon-Nitrogen Lyases
Flavobacterium saccharophilum
Pseudo brand of pseudoephedrine
Desmolases
Enzyme Reactivators
Lyase
3-ketovalidoxylamine A C-N lyase
Enzyme Activity

About this Paper

Related Feeds

Biosynthetic Transformations

Biosyntheic transformtions are multi-step, enzyme-catalyzed processes where substrates are converted into more complex products in living organisms. Simple compounds are modified, converted into other compounds, or joined together to form macromolecules. Discover the latest research on biosynthetic transformations here.