DOI: 10.1101/459974Nov 1, 2018Paper

Chiral twisting in cytoskeletal polymers regulates filament size and orientation

BioRxiv : the Preprint Server for Biology
Handuo ShiKerwyn Huang

Abstract

While cytoskeletal proteins in the actin family are structurally similar, as filaments they act as critical components of diverse cellular processes across all kingdoms of life. In many rod-shaped bacteria, the actin homolog MreB directs cell-wall insertion and maintains cell shape, but it remains unclear how structural changes to MreB affect its physiological function. To bridge this gap, we performed molecular dynamics simulations for Caulobacter crescentus MreB and then utilized a coarse-grained biophysical model to successfully predict MreB filament properties in vivo. We discovered that MreB double protofilaments exhibit left-handed twisting that is dependent on the bound nucleotide and membrane binding; the degree of twisting determines the limit length and orientation of MreB filaments in vivo. Membrane binding of MreB also induces a stable membrane curvature that is physiologically relevant. Together, our data empower the prediction of cytoskeletal filament size from molecular dynamics simulations, providing a paradigm for connecting protein filament structure and mechanics to cellular functions.

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.