Apr 18, 2016

Chm7 and Heh1 form a nuclear envelope subdomain for nuclear pore complex quality control

BioRxiv : the Preprint Server for Biology
Brant M WebsterC. Patrick Lusk

Abstract

Mechanisms that ensure the integrity of the nuclear envelope rely on membrane remodeling proteins like the ESCRTs and the AAA ATPase Vps4, which help seal the nuclear envelope at the end of mitosis and prevent the formation of defective nuclear pore complexes (NPCs). Here, we show that the integral inner nuclear membrane proteins Heh1 and Heh2 directly bind the ESCRT-III, Snf7, and the ESCRT-II/III chimera, Chm7, in their "open" forms. Moreover, Heh1 is required for Chm7-recruitment to the nuclear envelope. As Chm7 accumulates on the nuclear envelope upon blocks to NPC assembly, but not to nuclear transport, interactions between ESCRTs and the Heh proteins might form a biochemically distinct nuclear envelope subdomain that delimits regions of assembling NPCs. Interestingly, deletion of CHM7 suppresses the formation of the storage of improperly assembled NPC compartment prevalent in vps4Δ ; strains. Thus, our data support that the Heh1-dependent recruitment of Chm7 is a key component of a quality control pathway whose local regulation by Vps4 and the transmembrane nup, Pom152, prevents loss of nuclear compartmentalization by defective NPCs.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Inner Nuclear Membrane
VPS4A protein, human
Biochemical Pathway
Nasopharyngeal Carcinoma
Adenosine Triphosphatases
CHMP4A
Complex (molecular entity)
VPS4A gene
Nuclear Transport
Chimera Organism

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Aortic Aneurysm

An aortic aneurysm is the weakening and bulging of the blood vessel wall in the aorta. This causes dilatation of the aorta, which is usually asymptomatic but carries the risk of rupture and hemorrhage. Find the latest research on aortic aneurysms here.

Aneurysm

Aneurysms are outward distensions or bulges that occurs in a weakened wall of blood vessels. Discover the latest research on aneurysms here.