Apr 18, 2020

Transplantation of muscle stem cell mitochondria rejuvenates the bioenergetic function of dystrophic muscle

BioRxiv : the Preprint Server for Biology
M. MohiuddinYoung Charles Jang

Abstract

Mitochondrial dysfunction has been implicated in various pathologies, including muscular dystrophies. During muscle regeneration, resident stem cells, also known as muscle satellite cells (MuSCs), undergo myogenic differentiation to form de novo myofibers or fuse to existing syncytia. Leveraging this cell-cell fusion process, we postulated that mitochondria stemming from MuSCs could be transferred to myofibers during muscle regeneration to remodel the mitochondrial network and restore bioenergetic function. Here, we report that dystrophic MuSCs manifest significant mitochondrial dysfunction and fuse with existing dystrophic myofibers to propagate mitochondrial dysfunction during muscle repair. We demonstrate that by transplanting healthy donor MuSCs into dystrophic host muscle, the mitochondrial network (reticulum) and bioenergetic function can be rejuvenated. Conversely, when bioenergetically-compromised donor MuSCs are transplanted, improvements in mitochondrial organization and bioenergetic function were ablated in the dystrophic recipient. Overall, these data reveal a unique role of muscle stem cells as an essential regulator of myofiber mitochondrial homeostasis and a potential therapeutic target against mitochondrial myop...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Markers
Study
Size
Genome
Site
Sequencing
Massively-Parallel Sequencing
Alleles
Plant Leaves
Population Group

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.