Mar 30, 2017

Chromosome Conformation Paints Reveal The Role Of Lamina Association In Genome Organization And Regulation

BioRxiv : the Preprint Server for Biology
Teresa Romeo LuperchioKaren L Reddy

Abstract

Non-random, dynamic three-dimensional organization of the nucleus is important for regulation of gene expression. Numerous studies using chromosome conformation capture strategies have uncovered ensemble organizational principles of individual chromosomes, including organization into active (A) and inactive (B) compartments. In addition, large inactive regions of the genome appear to be associated with the nuclear lamina, the so-called Lamina Associated Domains (LADs). However, the interrelationship between overall chromosome conformation and association of domains with the nuclear lamina remains unclear. In particular, the 3D organization of LADs within the context of the entire chromosome has not been investigated. In this study, we describe “chromosome conformation paints” to determine the relationship in situ between LAD and non-LAD regions of the genome in single cells. We find that LADs organize into constrained and compact regions at the nuclear lamina, and these findings are supported by an integrated analysis of both DamID and Hi-C data. Using a refined algorithm to identify active (A) and inactive (B) compartments from Hi-C data, we demonstrate that the LADs correspond to the B compartment. We demonstrate that in situ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Chromosome Structures
Body Fluid Compartments
Genome
Three-dimensional
Nuclear Lamina
Regulation of Biological Process
Blade - plant part
Transcription Initiation Site
Genomic Stability

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.