Apr 12, 2016

Chromosome-wide simulations uncover folding pathway and 3D organization of interphase chromosomes

BioRxiv : the Preprint Server for Biology
Davide MichielettoAjazul H Wani

Abstract

Three-dimensional interphase organization of metazoan genomes has been linked to cellular identity. However, the principles governing 3D interphase genome architecture and its faithful transmission through disruptive events of cell-cycle, like mitosis, are not fully understood. By using Brownian dynamics simulations of Drosophila chromosome 3R up to time-scales of minutes, we show that chromatin binding profile of Polycomb-repressive-complex-1 robustly predicts a sub-set of topologically associated domains (TADs), and inclusion of other factors recapitulates the profile of all TADs, as observed experimentally. Our simulations show that chromosome 3R attains interphase organization from mitotic state by a two-step process in which formation of local TADs is followed by long-range interactions. Our model also explains statistical features and tracks the assembly kinetics of polycomb subnuclear clusters. In conclusion, our approach can be used to predict structural and kinetic features of 3D chromosome folding and its associated proteins in biological relevant genomic and time scales.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biochemical Pathway
Genome
Three-dimensional
Interphase
Subnuclear Space
Pc
Genomic Stability
Drosophila
Genomics
Disease Transmission

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Cycle Modeling

Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur. Discover the latest research on cell cycle modeling here.