Mar 17, 2016

Cis-regulatory evolution in prokaryotes revealed by interspecific archaeal hybrids.

BioRxiv : the Preprint Server for Biology
Carlo G ArtieriHunter B Fraser

Abstract

The study of allele-specific expression (ASE) in interspecific hybrids has played a central role in our understanding of a wide range of phenomena, including genomic imprinting, X-chromosome inactivation, and cis-regulatory evolution. However across the hundreds of studies of hybrid ASE, all have been restricted to sexually reproducing eukaryotes, leaving a major gap in our understanding of the genomic patterns of cis-regulatory evolution in prokaryotes. Here we introduce a method to generate stable hybrids between two species of halophilic archaea, and measure genome-wide ASE in these hybrids with RNA-seq. We found that over half of all genes have significant ASE, and that genes encoding kinases show evidence of lineage-specific selection on their cis-regulation. This pattern of polygenic selection suggested species-specific adaptation to low phosphate conditions, which we confirmed with growth experiments. Altogether, our work extends the study of ASE to archaea, and suggests that cis-regulation can evolve under polygenic lineage-specific selection in prokaryotes.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Genome
Genes
Regulation of Biological Process
Transcription factor B, Archaea
Genome Assembly Sequence
Phosphate Measurement
Archaea
X Chromosome Inactivation Function
Hybrids

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Archaeogenetics

Recent advances in genomic sequencing has led to the discovery of new strains of Archaea and shed light on their evolutionary history. Discover the latest research on Archaeogenetics here.

Related Papers

Proceedings of the National Academy of Sciences of the United States of America
P J Keeling, W F Doolittle
Results and Problems in Cell Differentiation
M F Lyon
© 2020 Meta ULC. All rights reserved