Dec 1, 1983

Cloning and sequence analysis of cDNA for human renin precursor

Proceedings of the National Academy of Sciences of the United States of America
T ImaiK Murakami

Abstract

The primary structure of human renin precursor has been deduced from its cDNA sequence. A library of cDNA clones was constructed from human kidney poly(A)+ RNA by applying the vector/primer method of Okayama and Berg. The library was screened for human renin sequences by hybridization with the previously cloned mouse renin cDNA. Of the 240,000 colonies screened, 35 colonies that were positive for hybridization were isolated. Two recombinant plasmids containing long inserts of about 1,300 and 1,600 base pairs were selected for sequence analysis. The amino acid sequence predicted from the cDNA sequence shows that the human renin precursor consists of 406 amino acids with a pre and a pro segment carrying 20 and 46 amino acids, respectively. A high degree of sequence homology was found upon comparison of the mouse and human renins. Close similarities were also observed in the primary structures of renin and aspartyl proteinases that have known three-dimensional structures, suggesting a similar tertiary structure for renin.

  • References17
  • Citations145

References

  • References17
  • Citations145

Citations

Mentioned in this Paper

Tissue Specificity
Kidney
Ren1
Genomic Hybridization
DNA Restriction Enzymes
Poly(A) Tail
REN
Enzyme Precursors
Liver
DNA, Double-Stranded

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.

Related Papers

Proceedings of the National Academy of Sciences of the United States of America
P M HobartJ M Chirgwin
Proceedings of the National Academy of Sciences of the United States of America
C E BurnhamK R Lynch
© 2020 Meta ULC. All rights reserved