Aug 18, 2017

Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis

Journal of Dental Research
K J LoughS E Williams


Secondary palatogenesis occurs when the bilateral palatal shelves (PS), arising from maxillary prominences, fuse at the midline, forming the hard and soft palate. This embryonic phenomenon involves a complex array of morphogenetic events that require coordinated proliferation, apoptosis, migration, and adhesion in the PS epithelia and underlying mesenchyme. When the delicate process of craniofacial morphogenesis is disrupted, the result is orofacial clefting, including cleft lip and cleft palate (CL/P). Through human genetic and animal studies, there are now hundreds of known genetic alternations associated with orofacial clefts; so, it is not surprising that CL/P is among the most common of all birth defects. In recent years, in vitro cell-based assays, ex vivo palate cultures, and genetically engineered animal models have advanced our understanding of the developmental and cell biological pathways that contribute to palate closure. This is particularly true for the areas of PS patterning and growth as well as medial epithelial seam dissolution during palatal fusion. Here, we focus on epithelial cell-cell adhesion, a critical but understudied process in secondary palatogenesis, and provide a review of the available tools and m...Continue Reading

  • References79
  • Citations4


Mentioned in this Paper

Biochemical Pathway
Midline (Qualifier Value)
Structure of Papilla Incisiva of Mouth
Apoptosis, Intrinsic Pathway
Reparative Closure
Cell Motility
Cell to Cell Adhesion Signaling Pathway

Related Feeds

Birth Defects

Birth defects encompass structural and functional alterations that occur during embryonic or fetal development and are present since birth. The cause may be genetic, environmental or unknown and can result in physical and/or mental impairment. Here is the latest research on birth defects.

Biophysics of Adhesion

Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. It is also essential for infectious organisms, such as bacteria or viruses, to cause diseases. Understanding the biophysics of cell adhesion can help understand these diseases. Discover the latest research on the biophysics of adhesion here.

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Adhesion Molecules in Health and Disease

Cell adhesion molecules are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. Discover the latest research on adhesion molecule and their role in health and disease here.

Cell Migration in Cancer and Metastasis

Migration of cancer cells into surrounding tissue and the vasculature is an initial step in tumor metastasis. Discover the latest research on cell migration in cancer and metastasis here.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.

Related Papers

Developmental Dynamics : an Official Publication of the American Association of Anatomists
Rulang JiangAndrew C Lidral
Current Topics in Developmental Biology
Yu LanRulang Jiang
© 2020 Meta ULC. All rights reserved