Oct 20, 2005

Clustering of Ti on a C60 surface and its effect on hydrogen storage

Journal of the American Chemical Society
Qiang SunY Kawazoe


Recent efforts in finding materials suitable for storing hydrogen with large gravimetric density have focused attention on carbon-based nanostructures. Unfortunately, pure carbon nanotubes and fullerenes are unsuitable as hydrogen storage materials because of the weak bonding of the hydrogen molecules to the carbon frame. It has been shown very recently that coating of carbon nanostructures with isolated transition metal atoms such as Sc and Ti can increase the binding energy of hydrogen and lead to high storage capacity (up to 8 wt % hydrogen, which is 1.6 times the U.S. Department of Energy target set for 2005). This prediction has led to a great deal of excitement in the fuel cell community [see The Fuel Cell Review, http://fcr.iop.org/articles/features/2/7/4]. However, this prediction depends on the assumption that the metal atoms coated on the fullerene surface will remain isolated. Using first-principles calculations based on density functional theory, we show that Ti atoms would prefer to cluster on the C60 surface, which can significantly alter the nature of hydrogen bonding, thus affecting not only the amount of stored hydrogen but also their thermodynamics and kinetics.

  • References
  • Citations78


  • We're still populating references for this paper, please check back later.
  • References
  • Citations78

Mentioned in this Paper

Fullerene C60
Surface Properties
Crystallography, X-Ray
Nanotubes, Carbon

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.