Coalescent inferences in conservation genetics: should the exception become the rule?

BioRxiv : the Preprint Server for Biology
Valeria Montano

Abstract

Genetic estimates of effective population size (Ne) are an established means to develop informed conservation policies. Another key goal to pursue the conservation of endangered species is keeping the connectivity across fragmented environments, to which genetic inferences of gene flow and dispersal greatly contribute. Most current statistical tools for estimating such population demographic parameters are based on Kingman's coalescent (KC). However, KC is inappropriate for taxa displaying skewed reproductive variance, a property widely observed in natural species. Coalescent models that consider skewed reproductive success - called multiple merger coalescent (MMCs) - have been shown to substantially improve estimates of Ne when the distribution of offspring per capita is highly skewed. MMCs predictions of standard population genetic parameters, including the rate of loss of genetic variation and the fixation probability of strongly selected alleles, substantially depart from KC predictions. These extended models also allow studying gene genealogies in a spatial continuum, providing a novel theoretical framework to investigate spatial connectivity. Therefore, development of statistical tools based on MMC's should substantially ...Continue Reading

Related Concepts

Spatial Distribution
Environment
Sample Fixation
Chemokine (C-X-C Motif) Ligand 1 Production
Protein S
probe gene fragment
Genetic Studies
Species
Alleles
Fixation - Action

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.