Combinatorial synthesis of anti-HIV agents--a review

Combinatorial Chemistry & High Throughput Screening
Dharmarajan SriramAnanantha Naik Nagappa

Abstract

Combinatorial chemistry has been well recognized as an important tool of drug discovery. An ongoing hand is to integrate the combinatorial approach with fundamentals of medicinal chemistry and rational drug design. The last five years has seen an explosion in the exploration and adoption of combinatorial techniques. Indeed, it is difficult to identify any other topic in chemistry that has ever caught the imagination of chemists with such fervor and with the continuous development of high throughput screening methods. There is a growing need for the synthesis of a large number of molecules. Compound libraries designed to produce specific inhibitors of therapeutic target proteins have generated significant interest in drug discovery research. Combinatorial chemistry provides the opportunity to generate large libraries of compounds for biological testing. A literature search revealed that many lead compounds have indeed been discovered from libraries and this review presents a survey of combinatorial synthesis of HIV-1 reverse transcriptase inhibitors, protease inhibitors, HIV-1 function inhibitors such as adsorption inhibitors, CCR5 antagonists and HIV-1 Tat-tar inhibitors that can be developed as potential anti-HIV drugs.

Related Concepts

Related Feeds

Antimicrobial Resistance (ASM)

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.

Antimicrobial Resistance

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.