Combined Administration of Poly-ADP-Ribose Polymerase-1 and Caspase-3 Inhibitors Alleviates Neuronal Apoptosis After Spinal Cord Injury in Rats

World Neurosurgery
Wei ZhaoLianshuang Zhang


Neuronal apoptosis plays a pivotal role in spinal cord injury (SCI)-induced secondary cellular events. Caspase-dependent and -independent pathways are involved in neuronal apoptosis. Caspase-3 is the final effector of caspase-dependent apoptosis, whereas poly-ADP-ribose polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) are key executors of caspase-independent apoptosis. However, it remains unclear whether simultaneous inhibition of the 2 apoptosis pathways will be more beneficial for neuronal survival. Therefore, this study investigated the ability of coadministration of the PARP-1 inhibitor 3-aminobenzamide (3-AB) and caspase-3 inhibitor z-DEVD-fmk to attenuate apoptosis in a rat SCI model. The rats were subjected to moderate contusive SCI. Locomotor function was measured using the Basso, Beattie, and Bresnahan rating scales; neuronal apoptosis was detected using transferase-mediated deoxyuridine triphosphate-biotin nick end labeling; and immunohistochemistry and Western blotting were used to measure protein expression. We found the locomotor function of rats was weakened within 7 days post-SCI. At day 7 post-SCI, neuronal apoptosis dramatically increased and the expression of PARP-1, AIF, and cleaved caspase-3 was sig...Continue Reading

Related Concepts

Related Feeds

Apoptotic Caspases

Apoptotic caspases belong to the protease enzyme family and are known to play an essential role in inflammation and programmed cell death. Here is the latest research.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis