PMID: 103Apr 1, 1975

Combined effects of hypoxia and hypercapnia on the functional state of the respiratory center

Biulleten' eksperimental'noĭ biologii i meditsiny
A M Kulik, L N Kondrat'eva


Experiments were conducted on cats under nembutal anesthesia; a study was made of pulse activity of bulbar respiratory neurons, electrical activity of the diaphragm and of the intercostal muscles; pO2, pCO2, pH, arterial blood oxygen saturation were determined in combined action of hypoxia and hypercapnia. When hypoxic gaseous mixture was given for respiration the developing hypocapnia disturbed the discharge rhythmic activity of the respiratory neurons, the respiration acquiring a pathological character of the Cheyne--Stokes type. After addition to the hypoxic gaseous mixture of 2% CO2 the gaseous composition of the arterial blood approached the initial values; this addition prevented the development of hypercapnia and disturbances of rhythmic discharge activity of the respiratory neurons. Addition of 5% CO2 to the hypoxic gaseous mixture produced a negative effect: at first it intensified and then depressed the pulse activity of the respiratory neurons, caused metabolic and respiratory acidosis, and promoted asphyxia.


Jan 1, 1983·Current Medical Research and Opinion·W DolsB Rangoonwala

Related Concepts

Carbon Dioxide
Felis catus
Cheyne-Stokes Respiration
Respiratory Diaphragm
Electrophysiology (Science)
Hydrogen-Ion Concentration
Structure of Intercostal Muscle

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

The Tendon Seed Network

Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Long COVID-19

“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.