Apr 1, 2020

Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex?

BioRxiv : the Preprint Server for Biology
Rainer EngelkenFred Wolf


Genetic mediation of cortical plasticity and the role genetic variants play in previously observed response variability to transcranial direct current stimulation (tDCS) have become important issues in the tDCS literature in recent years. This study investigated whether inter-individual variability to tDCS was in-part genetically mediated. In sixty-one healthy males, anodal-tDCS (a-tDCS) and sham-tDCS were administered to the primary motor cortex at 1mA for 10-minutes via 6x4cm active and 7x5cm return electrodes. Twenty-five single-pulse transcranial magnetic stimulation (TMS) motor evoked potentials (MEP) were recorded to represent corticospinal excitability (CSE). Twenty-five paired-pulse MEPs were recorded with 3ms inter-stimulus interval (ISI) to assess intracortical inhibition (ICI) via short interval intracranial inhibition (SICI) and 10ms ISI for intracortical facilitation (ICF). Saliva samples tested for specific genetic polymorphisms in genes encoding for excitatory and inhibitory neuroreceptors. Individuals were sub-grouped based on a pre-determined threshold and via statistical cluster analysis. Two distinct subgroups were identified, increases in CSE following a-tDCS (i.e. Responders) and no increase or even reducti...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Asynchronous Neurotransmitter Secretion

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.