May 11, 2017

Common genetic variation drives molecular heterogeneity in human iPSCs

Nature
Helena KilpinenDaniel J Gaffney

Abstract

Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.

Mentioned in this Paper

Genome-Wide Association Study
Study
Quantitative Trait Loci
Research
Pluripotent Stem Cells
DNA Copy Number Changes
Genome
Tissue Specificity
Human Induced Pluripotent Stem Cells
Intermediate Periventricular Nucleus

Related Feeds

Cambridge Stem Cell Institute - Researcher Network

Cambridge Stem Cell Institute's mission is to transform human health through a deep understanding of stem cell biology. Follow this feed to stay up to date on research published in this group.

Cancer Metabolic Reprogramming (Keystone)

Cancer metabolic reprogramming is important for the rapid growth and proliferation of cancer cells. Cancer cells have the ability to change their metabolic demands depending on their environment, regulated by the activation of oncogenes or loss of tumor suppressor genes. Here is the latest research on cancer metabolic reprogramming.

Cancer Metabolic Reprogramming

Cancer metabolic reprogramming is important for the rapid growth and proliferation of cancer cells. Cancer cells have the ability to change their metabolic demands depending on their environment, regulated by the activation of oncogenes or loss of tumor suppressor genes. Here is the latest research on cancer metabolic reprogramming.