Apr 22, 2020

Resource competition shapes biological rhythms and promotes temporal niche differentiation in a community simulation

BioRxiv : the Preprint Server for Biology
Vance D. GaoF. W. Turek

Abstract

Competition for resources often contributes strongly to defining an organism's ecological niche. Biological rhythms are important adaptations to the temporal dimension of niches, but the role of other organisms in determining such temporal niches have not been much studied, and the role specifically of competition even less so. We investigate how interspecific and intraspecific competition for resources shapes an organism's activity rhythms. For this, communities of one or two species in an environment with limited resource input were simulated. We demonstrate that when organisms are arrhythmic, one species will always be competitively excluded from the environment, but the existence of activity rhythms allows niche differentiation and indefinite coexistence of the two species. Two species which are initially active at the same phase will differentiate their phase angle of entrainment over time to avoid each other. When only one species is present in an environment, competition within individuals of the species strongly selects for niche expansion through arrhythmicity, but the addition of an interspecific competitor facilitates evolution of increased rhythmic amplitude when combined with additional adaptations for temporal spe...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome-Wide Association Study
Study
Research
Pluripotent Stem Cells
Genome
Human Induced Pluripotent Stem Cells
Cell Differentiation Process
Cellular Reprogramming
Induced Pluripotent Stem Cells
Genomics

Related Feeds

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

Cancer Metabolic Reprogramming

Cancer metabolic reprogramming is important for the rapid growth and proliferation of cancer cells. Cancer cells have the ability to change their metabolic demands depending on their environment, regulated by the activation of oncogenes or loss of tumor suppressor genes. Here is the latest research on cancer metabolic reprogramming.

Cancer Metabolic Reprogramming (Keystone)

Cancer metabolic reprogramming is important for the rapid growth and proliferation of cancer cells. Cancer cells have the ability to change their metabolic demands depending on their environment, regulated by the activation of oncogenes or loss of tumor suppressor genes. Here is the latest research on cancer metabolic reprogramming.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.