Apr 13, 2020

Single-cell copy number lineage tracing enabling gene discovery

BioRxiv : the Preprint Server for Biology
F. WangKen Chen


Aneuploidy plays critical roles in genome evolution. Alleles, whose dosages affect the fitness of an ancestor, will have altered frequencies in the descendant populations upon perturbation. Single-cell sequencing enables comprehensive genome-wide copy number profiling of thousands of cells at various evolutionary stage and lineage. That makes it possible to discover dosage effects invisible at tissue level, provided that the cell lineages can be accurately reconstructed. Here, we present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles. We also present a statistical routine named lineage speciation analysis (LSA), which facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. We assessed our approaches using a variety of single-cell datasets. Overall, MEDALT appeared more accurate than phylogenetics approaches in reconstructing copy number lineage. From the single-cell DNA-sequencing data of 20 triple-negative breast cancer patients, our approaches effectively prioritized genes that are essential for breast cancer cell fitness and are predictive of patient survival, includi...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

In Vivo
Enzymes, antithrombotic
DNA Topology Regulation
Science of Morphology
Double-Strand-Break Repair Protein Rad21 Homolog

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.