DOI: 10.1101/512483Jan 4, 2019Paper

Comparative analysis of epigenetic aging clocks from CpG characteristics to functional associations

BioRxiv : the Preprint Server for Biology
Zuyun LiuMorgan E Levine

Abstract

To date, a number of epigenetic clocks have been developed using DNA methylation data, aimed at approximating biological aging in multiple tissues/cells. However, despite the assumption that these clocks are meant to capture the same phenomenon—aging, their correlations with each other are weak, and there is a lack of consistency in their associations with outcomes of aging. Therefore, the goal of this study was to compare and contrast the molecular characteristics and functional associations of 11 existing epigenetic clocks, using data from diverse human tissue and cell types. Results suggest that the CpGs comprised in the various clocks differ in regards to the consistency of their age correlations across tissues/cells. Using microarray expression data from purified CD14+ monocytes, we found that six clocks—Yang, Hannum, Lin, Levine, Horvath1, and Horvath2—has relatively similar transcriptional profiles. Network analysis revealed nine co-expression modules, most of which display robust correlations across various clocks. One significant module—turquoise is involved in mitochondrial translation, gene expression, respiratory chain complex assembly, and oxidative phosphorylation. Finally, using data from 143B cells with chronica...Continue Reading

Related Concepts

Aging
DNA, Mitochondrial
Gene Expression
Genes, Regulator
Oxidative Phosphorylation
Transcription, Genetic
Biological Aging
CpG Islands
DNA Methylation
Comparative Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Genetics & Epigenetics of Aging

Dozens of genes are implicated in lifespan, and epigenetic changes during aging affect cell function. This feed focuses on the genetics and epigenetics of aging.

Aging Genetics (Keystone)

This feed focuses on aging epidemiology and genetic, epigenetic, and proteomic aspects underlying aging, as well as aging- associated biomarkers. Here the latest research in this domain.

Cell Aging (Keystone)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

Cell Aging

This feed focuses on cellular aging with emphasis on mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

Cell Aging (Preprints)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.