PMID: 39634Sep 1, 1979

Comparison of conformational possibilities of polypeptides representing the terminal segments of different histones

Biofizika
E I RammV K Burichenko

Abstract

Regular polypeptides--models of the N-terminal fragments of histones H2A and H4 and the C-terminal half of histone H1 were synthesized. Conformations of these polypeptides were investigated by using the methods of circular dichroism and optical rotatory dispersion. It was shown that all polypeptides studied in aqueous solutions at neutral pH and at low temperature (+2 degrees C) had the conformation of left-handed helix (LHH) or poly-L-proline type. The neutralization of positive charges of side groups at alkaline pH of screening of charged groups at a high ionic strength (up to 1 M NaF) results in increase of the degree of defectness of this conformation. There occur no transition of LHH to such an ordered conformation as alpha-helix or beta-sheet structure or complete disappearance of LHH. The influence of temperature, 80% ethanol and 1% sodium dodecylsulphate on the structure of these polypeptides was also studied. Differences in conformational potencies of two studied groups of polypeptides which are the models of the terminal fragments of various histones were discovered and associated with different biological functions of these histones in chromatin.

Related Concepts

Ethanol
Optical Rotatory Dispersion
Protein Conformation
Hypoplastic Left Heart Syndrome
Polypeptides
Irium
Solvents
Circular Dichroism, Vibrational
Histone H7
Hydrogen-Ion Concentration

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.