PMID: 4905309Feb 1, 1970Paper

Compartmentation in the induction of the hexose-6-phosphate transport system of Escherichia coli

Journal of Bacteriology
H H Winkler

Abstract

The induction of the hexose-6-phosphate transport system was investigated. Glucose-6-phosphate (G6P) at concentrations as low as 10(-4)m was able to induce this system in wild-type cells, as well as in mutants lacking phosphoglucose isomerase or G6P dehydrogenase. Growth in the presence of fructose-6-phosphate (F6P) induced the system only if the cells contained phosphoglucose isomerase. Furthermore, glucose and F6P were found to induce the system only if the extracellular concentration of G6P became appreciable in the medium as a consequence of the leakage of intracellular G6P formed from the glucose or F6P. Intracellular G6P was not an inducer even at high concentrations. The metabolism of glucose inhibited the induction of the hexose-6-phosphate transport system. Hypotheses for this compartmentalization of inducer and membrane-associated induction are presented.

Citations

Mar 15, 1973·European Journal of Biochemistry·A J.J. Reuser, P W. Postma
Jan 1, 1973·Journal of Bioenergetics·H N Christensen
May 10, 1974·Annals of the New York Academy of Sciences·F M KahanH Kropp
Feb 19, 1971·FEBS Letters·T Ferenci, H L. Kornberg

Related Concepts

Alkaline Phosphatase
Enzyme Induction
Enzyme Repression
Alkalescens-Dispar Group
Levulosa Ife
Glucose, (beta-D)-Isomer
Glucosephosphate Dehydrogenase
Autocrine Motility Factor
Hexosephosphates
Spectrophotometry

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Archaeal RNA Polymerase

Archaeal RNA polymerases are most similar to eukaryotic RNA polymerase II but require the support of only two archaeal general transcription factors, TBP (TATA-box binding protein) and TFB (archaeal homologue of the eukaryotic general transcription factor TFIIB) to initiate basal transcription. Here is the latest research on archaeal RNA polymerases.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.