DOI: 10.1101/515791Jan 9, 2019Paper

Competing interactions modulate the activity of Sgs1 during DNA end resection

BioRxiv : the Preprint Server for Biology
Kristina KasaciunaiteRalf Seidel

Abstract

DNA double-strand break repair by homologous recombination employs long-range resection of the 5' DNA ends at the break points. In Saccharomyces cerevisiae, this process can be performed by the RecQ helicase Sgs1 and the helicase-nuclease Dna2. Though functional interplay has been shown, it remains unclear whether and how the proteins cooperate on the molecular level. Here, we resolved the dynamics of DNA unwinding by Sgs1 at the single molecule level and investigated its regulation by Dna2, the single-stranded DNA binding protein RPA and the Top3-Rmi1 complex. We found that Dna2 modulates the velocity of Sgs1, indicating that during end resection the proteins form a physical complex and couple their activities. Sgs1 unwinds DNA and feeds single-stranded DNA to Dna2 for degradation. RPA is found to regulate the processivity and the affinity of Sgs1 to the DNA fork, while Top3-Rmi1 modulated the velocity of Sgs1. We think that the differential regulation of the Sgs1 activity by its protein partners is important to allow diverse cellular functions of Sgs1 during the maintenance of genome stability.

Related Concepts

DNA
DNA, Single-Stranded
DNA-Binding Proteins
Recombination, Genetic
Saccharomyces cerevisiae
RecQ Helicases
Modulated
Excision
Double Stranded DNA Antibody (Lab Procedure)
Helicase

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.