Comprehensive mass spectrometry-guided plant specialized metabolite phenotyping reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae

BioRxiv : the Preprint Server for Biology
Kyo Bin KangPieter C. Dorrestein


Plants produce a myriad of specialized metabolites to overcome their sessile habit and combat biotic as well as abiotic stresses. Evolution has shaped specialized metabolite diversity, which drives many other aspects of plant biodiversity. However, until recently, large-scale studies investigating specialized metabolite diversity in an evolutionary context have been limited by the impossibility to identify chemical structures of hundreds to thousands of compounds in a time-feasible manner. Here, we introduce a workflow for large-scale, semi-automated annotation of specialized metabolites, and apply it for over 1000 metabolites of the cosmopolitan plant family Rhamnaceae. We enhance the putative annotation coverage dramatically, from 2.5 % based on spectral library matches alone to 42.6 % of total MS/MS molecular features extending annotations from well-known plant compound classes into the dark plant metabolomics matter. To gain insights in substructural diversity within the plant family, we also extract patterns of co-occurring fragments and neutral losses, so-called Mass2Motifs, from the dataset; for example, only the Ziziphoid clade developed the triterpenoid biosynthetic pathway, whereas the Rhamnoid clade predominantly dev...Continue Reading

Related Concepts

Immunoglobulin Isotypes
Microscopy, Fluorescence
Protein O-Methyltransferase
Mass Spectrometry
Anatomical Space Structure
Leptopsylla segnis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.