Computational approaches for interpreting scRNA-seq data
Abstract
The recent developments in high-throughput single-cell RNA sequencing technology (scRNA-seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high-dimensional data mining techniques. Here, we consider biological questions for which scRNA-seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene-level analyses are particularly informative areas of computational analysis.
References
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
Citations
Related Concepts
Related Feeds
CZI Human Cell Atlas Seed Network
The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.