Computational design of small transcription activating RNAs for versatile and dynamic gene regulation

Nature Communications
James ChappellJulius B Lucks


A longstanding goal of synthetic biology has been the programmable control of cellular functions. Central to this is the creation of versatile regulatory toolsets that allow for programmable control of gene expression. Of the many regulatory molecules available, RNA regulators offer the intriguing possibility of de novo design-allowing for the bottom-up molecular-level design of genetic control systems. Here we present a computational design approach for the creation of a bacterial regulator called Small Transcription Activating RNAs (STARs) and create a library of high-performing and orthogonal STARs that achieve up to ~ 9000-fold gene activation. We demonstrate the versatility of these STARs-from acting synergistically with existing constitutive and inducible regulators, to reprogramming cellular phenotypes and controlling multigene metabolic pathway expression. Finally, we combine these new STARs with themselves and CRISPRi transcriptional repressors to deliver new types of RNA-based genetic circuitry that allow for sophisticated and temporal control of gene expression.


May 19, 2007·Nature Reviews. Genetics·Uri Alon
May 23, 2009·Nature Reviews. Molecular Cell Biology·Priscilla E M Purnick, Ron Weiss
Oct 6, 2009·Nature Biotechnology·Howard M SalisChristopher A Voigt
Dec 17, 2009·Nature Biotechnology·Timothy K LuJames J Collins
Jul 21, 2010·Journal of Computational Chemistry·Joseph N ZadehNiles A Pierce
May 11, 2011·Proceedings of the National Academy of Sciences of the United States of America·Julius B LucksAdam P Arkin
Dec 24, 2011·Science·James M CarothersJay D Keasling
Mar 27, 2012·Nature Chemical Biology·Vivek K MutalikAdam P Arkin
Sep 6, 2012·Proceedings of the National Academy of Sciences of the United States of America·Guillermo RodrigoAlfonso Jaramillo
Sep 18, 2012·Nature Biotechnology·Lei QiAdam P Arkin
Jan 1, 2013·Nucleic Acids Research·Manja WachsmuthMario Mörl
Jan 22, 2013·Cell·Alexander Serganov, Evgeny Nudler
Jan 22, 2013·Nature Biotechnology·Dokyun NaSang Yup Lee
Mar 21, 2013·Nucleic Acids Research·Guillaume CambrayDrew Endy
Jun 14, 2013·Nucleic Acids Research·Melissa K Takahashi, Julius B Lucks
Aug 3, 2013·ACS Synthetic Biology·Jordan AngDavid R McMillen
Sep 21, 2013·ACS Synthetic Biology·François St-PierreKeith E Shearwin
Oct 3, 2013·Journal of Visualized Experiments : JoVE·Zachary Z SunVincent Noireaux
Oct 15, 2013·Biotechnology Journal·James ChappellJulius B Lucks
Nov 26, 2013·Current Opinion in Chemical Biology·Alec A K NielsenChristopher A Voigt
Apr 17, 2014·Nature Reviews. Microbiology·Lei S Qi, Adam P Arkin
May 17, 2014·Bioinformatics·Guillermo Rodrigo, Alfonso Jaramillo
Oct 3, 2014·Nucleic Acids Research·Andrew B KennedyChristina D Smolke
Oct 6, 2014·Nature Methods·Simon AusländerMartin Fussenegger
Nov 25, 2014·Cell·Alexander A GreenPeng Yin
Nov 25, 2014·Cell·Keith PardeeJames J Collins
Feb 3, 2015·Nature Chemical Biology·James ChappellJulius B Lucks
Apr 1, 2015·RNA Biology·Manja WachsmuthMario Mörl
Jun 22, 2015·Current Opinion in Chemical Biology·James ChappellJulius B Lucks
Nov 25, 2015·Molecular Systems Biology·Jérôme IzardHidde de Jong
Dec 2, 2015·Nucleic Acids Research·Amin Espah BorujeniHoward M Salis
Jan 29, 2016·ACS Synthetic Biology·Jonathan GaramellaVincent Noireaux
Mar 13, 2016·Nucleic Acids Research·Maureen McKeagueChristina D Smolke
Mar 22, 2016·ACS Synthetic Biology·Manish KushwahaAlfonso Jaramillo
Mar 30, 2016·Annual Review of Biochemistry·Ananya Ray-SoniRobert Landick
Sep 28, 2016·Nature Communications·Michele FellettiJörg S Hartig
Nov 1, 2016·Nature Structural & Molecular Biology·Kyle E WattersJulius B Lucks
Feb 14, 2017·Journal of the American Chemical Society·Brian R WolfeNiles A Pierce
Mar 30, 2017·ACS Synthetic Biology·Yili QianDomitilla Del Vecchio
Jun 14, 2017·Nucleic Acids Research·Amar Ghodasara, Christopher A Voigt
Jul 27, 2017·Nature·Alexander A GreenPeng Yin


Jan 31, 2018·Journal of Industrial Microbiology & Biotechnology·Di LiuFuzhong Zhang
Jun 30, 2018·Journal of Computational Biology : a Journal of Computational Molecular Cell Biology·Komlan AtiteyPaul Rees
Jul 20, 2018·PLoS Genetics·Arantxa RosadoGuillermo Rodrigo
Jan 14, 2019·Biotechnology and Bioengineering·Alexandra WestbrookElisa Franco
Feb 13, 2019·Nanomaterials·Zhining SunMingxu You
May 5, 2018·Scientific Reports·Emanuela TorelliNatalio Krasnogor
Aug 23, 2019·Nature Communications·Cong GaoLiming Liu
Sep 24, 2020·Biochemical Society Transactions·Javier Santos-Moreno, Yolanda Schaerli
Jun 8, 2019·Chemical Communications : Chem Comm·Linqiang PanCheng Zhang
Nov 7, 2019·Nature Chemical Biology·Jongmin KimAlexander A Green
Nov 11, 2019·Emerging Topics in Life Sciences·Alexander A Green
Nov 18, 2020·Nature Communications·Maarten Van BremptMarjan De Mey
Feb 13, 2021·NAR Genomics and Bioinformatics·Saba NafeesCatherine A Wakeman
Jan 13, 2021·Chembiochem : a European Journal of Chemical Biology·Han WuFenglin Wang
Feb 24, 2021·Nucleic Acids Research·Scott P CollinsChase L Beisel
Mar 21, 2021·Nature Communications·F Veronica GrecoThomas E Gorochowski
Apr 7, 2021·Nucleic Acids Research·Maria Claudia Villegas KcamJames Chappell
Apr 4, 2021·Journal of Molecular Biology·Matthew S VerosloffJulius B Lucks
Apr 10, 2021·ACS Synthetic Biology·Cameron J GlasscockJulius B Lucks
May 7, 2021·Nucleic Acids Research·Gerard MinuesaIvan Dotu
Mar 31, 2021·Annual Review of Chemical and Biomolecular Engineering·Cynthia NiKristala L J Prather

Methods Mentioned

flow cytometry

Related Concepts

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.