PMID: 25530950Dec 23, 2014

Computational methods and opportunities for phosphorylation network medicine

Translational Cancer Research
Yian Ann Chen, Steven A Eschrich


Protein phosphorylation, one of the most ubiquitous post-translational modifications (PTM) of proteins, is known to play an essential role in cell signaling and regulation. With the increasing understanding of the complexity and redundancy of cell signaling, there is a growing recognition that targeting the entire network or system could be a necessary and advantageous strategy for treating cancer. Protein kinases, the proteins that add a phosphate group to the substrate proteins during phosphorylation events, have become one of the largest groups of 'druggable' targets in cancer therapeutics in recent years. Kinase inhibitors are being regularly used in clinics for cancer treatment. This therapeutic paradigm shift in cancer research is partly due to the generation and availability of high-dimensional proteomics data. Generation of this data, in turn, is enabled by increased use of mass-spectrometry (MS)-based or other high-throughput proteomics platforms as well as companion public databases and computational tools. This review briefly summarizes the current state and progress on phosphoproteomics identification, quantification, and platform related characteristics. We review existing database resources, computational tools, m...Continue Reading

Related Concepts

Malignant Neoplasms
Pharmaceutical Preparations
Inorganic phosphate
Protein KINASE
Post-Translational Protein Processing
Computer Software
Mass Spectrometry

Related Feeds

Advanced Imaging of Cellular Signaling

Cell signaling is a vital mechanism for communication within cells and outside with the environment. Several different signaling pathways have been found and advanced imaging techniques are being developed to visualize the molecules involved in these signaling pathways. Find the latest research in advanced imaging of cellular signaling here.