Dec 10, 2017

Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL

Methods in Molecular Biology
Karthik RamanShankar Balachandran

Abstract

In this chapter, we describe Fast-SL, an in silico approach to predict synthetic lethals in genome-scale metabolic models. Synthetic lethals are sets of genes or reactions where only the simultaneous removal of all genes or reactions in the set abolishes growth of an organism. In silico approaches to predict synthetic lethals are based on Flux Balance Analysis (FBA), a popular constraint-based analysis method based on linear programming. FBA has been shown to accurately predict the viability of various genome-scale metabolic models. Fast-SL builds on the framework of FBA and enables the prediction of synthetic lethal reactions or genes in different organisms, under various environmental conditions. Predicting synthetic lethals in metabolic network models allows us to generate hypotheses on possible novel genetic interactions and potential candidates for combinatorial therapy, in case of pathogenic organisms. We here summarize the Fast-SL approach for analyzing metabolic networks and detail the procedure to predict synthetic lethals in any given metabolic model. We illustrate the approach by predicting synthetic lethals in Escherichia coli. The Fast-SL implementation for MATLAB is available from https://github.com/RamanLab/FastS...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Metabolic Process, Cellular
In Silico
7-fluorobenzanthracene
Genes
Metabolic Networks
FBXO3
Metabolic Networks and Pathways
Pathogenic Organism
Genes, Bacterial
Drug Interactions

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.