Dec 21, 2004

Computational study of hydrogen binding by metal-organic framework-5

The Journal of Chemical Physics
Tatsuhiko SagaraEric Ganz


We report the results of quantum chemistry calculations on H(2) binding by the metal-organic framework-5 (MOF)-5. Density functional theory calculations were used to calculate the atomic positions, lattice constant, and effective atomic charges from the electrostatic potential for the MOF-5 crystal structure. Second-order Møller-Plesset perturbation theory was used to calculate the binding energy of H(2) to benzene and H(2)-1,4-benzenedicarboxylate-H(2). To achieve the necessary accuracy, the large Dunning basis sets aug-cc-pVTZ, and aug-cc-pVQZ were used, and the results were extrapolated to the basis set limit. The binding energy results were 4.77 kJ/mol for benzene, 5.27 kJ/mol for H(2)-1,4-benzenedicarboxylate-H(2). We also estimate binding of 5.38 kJ/mol for Li-1,4-benzenedicarboxylate-Li and 6.86 kJ/mol at the zinc oxide corners using second-order Møller-Plesset perturbation theory. In order to compare our theoretical calculations to the experimental hydrogen storage results, grand canonical Monte Carlo calculations were performed. The Monte Carlo simulations identify a high energy binding site at the corners that quickly saturated with 1.27 H(2) molecules at 78 K. At 300 K, a broad range of binding sites are observed.

Mentioned in this Paper

Zinc Oxide
Ligand Binding Domain
Crystal Structure

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Related Papers

The Journal of Physical Chemistry. B
Silvia BordigaKarl Petter Lillerud
Journal of the American Chemical Society
Jesse L C RowsellOmar M Yaghi
© 2020 Meta ULC. All rights reserved