Apr 3, 2020

Discrete action control for prosthetic digits

BioRxiv : the Preprint Server for Biology
Kevin M EsveltGeorge M Church

Abstract

Objective: We aim to develop a paradigm for simultaneous and independent control of multiple degrees of freedom (DOFs) for upper-limb prostheses. Approach: We introduce action control, a novel method to operate prosthetic digits with surface electromyography (EMG) based on multi-label, multi-class classification. At each time step, the decoder classifies movement intent for each controllable DOF into one of three categories: open, close, or stall (i.e., no movement). We implemented a real-time myoelectric control system using this method and evaluated it by running experiments with one unilateral and two bilateral amputees. Participants controlled a six-DOF bar interface on a computer display, with each DOF corresponding to a motor function available in multi-articulated prostheses. Main results: We show that action control can significantly and systematically outperform the state-of-the-art method of position control via multi-output regression in both task- and non-task-related measures. Improvements in median task performance ranged from 20.14% to 62.32% for individual participants. Analysis of a post-experimental survey revealed that all participants rated action higher than position control in a series of qualitative quest...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome
Genes
Environment
Evaluation
Wild bird
Genomics
Nuclease
Resistance Process
Clustered Regularly Interspaced Short Palindromic Repeats
Species

Related Feeds

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

Researcher Network:CZI Neurodegeneration Challenge

The Neurodegeneration Challenge Network aims to provide funding for and to bring together researchers studying neurodegenerative diseases. Find the latest research from the NDCN grantees here.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

© 2020 Meta ULC. All rights reserved